

CAC Value **Engineering History Presentation** September 9, 2014 **Transbay Transit Center** TJPA

Value Engineering Presentation Outline

Value Engineering throughout each phase of design and construction:

- Concept Validation
- Design
 - Schematic Design Overview
 - Design Development Overview
 - Construction Documents Overview
- Value Engineering Idea Examples
- Bidding Documents
- Construction Administration
- Summary

Concept Validation May 2008 – August 2009

- Began in May 2008
- Full analysis and evaluation of the Master Plan Scope Definition Scheme by HOK and comparison to PCPA's Competition Design Submission
- The most significant finding and recommendation was to employ a single phase "bottom-up" rather than a two phase "top-down" construction strategy which significantly reduced risks

Concept Validation Bottom-Up VS Top-Down

Transbay Transit Center

Top-Down

Bottom-Up

Concept Validation May 2008 – August 2009

- Overall reduction cost of construction = \$100M in 2008 dollars
 - Elimination of the 180' deep drilled piers saved \$50M in Phase 1
 - Elimination of site constraints associated with working below a fully functioning Transit Center saved \$50M in Phase 2

- Schematic Design
- Preliminary Design Development
- Final Design Development
- Preliminary Construction Documents

h

• Final Construction Documents

Schematic Design September 2008 – March 2009

- Concept Validation cost estimate revealed the need for significant Phase 1 savings
- January 2009 Initial VE ideas presented during Schematic Design -\$120M identified
- May 2009 Following the completion of the Schematic Design Cost Estimate, final VE options were selected for further study/implementation

Schematic Design VE Decision/Scope Matrix Considerations* – May 2009

Partial list of Value Engineering ideas implemented:

- Eliminate Bus Deck Waiting Area Enclosure
- Relocate Elevators/Delete Bridges
- Eliminated Glass Paving in Main Plaza
- Eliminate Flagstone paving around Escalator Glass Box
- Eliminated Southern Bus Jet Fountain

Preliminary Design Development March 2009 – October 2009

- Prior to compiling the 50% Design Development (DD) cost estimate, a VE target of \$40M was set
- September 2009 Initial VE ideas presented during Preliminary Design Development
- October 2009 Following the completion of the 50% DD cost estimate and reconciliation with Webcor/Obayashi, final VE options were selected for further study/implementation.

Preliminary Design Development VE Decision/Scope Matrix Considerations* - October 2009

Partial list of Value Engineering ideas implemented:

- Return to 5' mat with new tie down design
- Substitute Concrete Columns for steel at Concourse level
- Shift Train Box and Building 2' & reduce box by 20"
- Redefine Train Box SW cross-wall location according to property lines
- Reduce number of trees 10% of total value, others

*Partial List

Final Design Development Up to 100% milestone October 2009 – February 2010

- Initial 100% DD estimate (March 2010) demonstrated much closer alignment with revised Phase 1 construction budgets
- April 2010 An additional \$6M potential savings were identified, presented and implemented
- June 2010 The 100% DD reconciled estimate was completed

Preliminary Construction Documents March 2010 – November 2011

- Initiated in March 2010
 - Focused Value Engineering Workshop in October 2010
 - Began to develop Deduct Alternates for inclusion into the bidding documents
 - Updated Risk and Vulnerability Assessment in 2011

Preliminary Construction Documents Value Engineering Workshop -October 2010

- At the Beginning of the CD phase, a Value Engineering (VE)
 Workshop was conducted based on the 100% Design Development
- Outside consultants and experts were invited to participate
- The Workshop was focused on the following four elements:
 - GFRC Ceiling Systems
 - Vertical Transportation
 - Lighting Systems
 - Landscaped Rooftop Park
- 106 creative ideas were identified, 73 of these ideas were considered for further evaluation and analysis

Final Construction Documents November 2012 – May 2013

 Implemented Value Engineering Ideas and developed Deductive Alternates worth \$36M which were presented and accepted by the Board in July 2013

Final Construction Documents VE Ideas Implemented* November 2012 – May 2013

Partial list of Value Engineering ideas approved in the July 2013 Board Meeting:

- W-1 Awning Glass to Aluminum
- Ceiling GFRC to Metal
- Bus Deck Flooring Terrazzo to Polished Concrete
- Bus Deck Fascia GFRC to Metal
- Eliminate Lily Pond @ Roof Park
- Simplify Glass Skylight at Grand Hall

*Partial List

Final Construction Documents Deductive Alternates Documented

Deductive Alternates Documented* November 2012 – May 2013

Partial list of Deductive Alternates approved in the July 2013 Board Meeting:

- W-5 Wall System Glass to Metal
- W-7 System Glass to Metal
- Defer Second Service Elevator to Phase 2
- Eliminate Light Tubes from Roof Park to Bus Deck
- Modify backlighting at Bus Jet Fountain

*Partial List

Final Construction Documents Review Period June 2013 – April 2014

- After review of the Final Construction Documents package, 167 additional VE ideas were developed and considered in early 2014
- Over a 3 month period of review, 43 VE ideas were implemented into the final Bidding Documents
- Additional Deductive Alternates were also incorporated into the Bidding Documents

Final Construction Documents Phase 1 CD

Value Engineering Items Implemented*

Partial list of Value Engineering ideas incorporated into final Bidding Documents:

- Roof Park Fascia GFRC to metal
- Delete Roof Park Glass Floor Uplighting
- Delete purchase of window washing equipment (Vendor Supplied)
- Delete purchase of Compactors and Containers in Loading Dock areas (Vendor Supplied)
- Redesigned the bus crash rail steel to concrete option

*Partial List

Value Engineering Examples

Value Engineering Example Relocate Elevators/Delete Bridges

- Eliminated south water feature
- Eliminated bridge over Main Street to elevator on east side of Main
- Eliminated bridge from Howard Square

Value Engineering Example

- Eliminated Glass Paving in Main Plaza lacksquare
- Eliminated Flagstone paving around Escalator Glass Box lacksquare

- Eliminated Lily Pond
- Eliminated Lawn Terraces in Amphitheatre

Value Engineering Example **Reduce/Eliminate Tree Uplighting**

Transbay Transit Center

Original Design – Lighting Plan

Current Lighting Plan - Tree Uplighting Eliminated

Value Engineering Example Reduce Specimen tree sizes to reflect a 10% cost savings

Design at 50% CD

Most trees were specified at specimen sizes. At 50% CD, most trees were 60" Box or larger

Design at 95% CD

113 trees have been downsized 133 tree removed and/or replaced with shrubs At 95% CD, most trees are 36" box²⁵

Original Design

Current Design

Value Engineering Example Reduce Glass Enclosure around Bus Deck Waiting Area

Transbay Transit Center

GLASS ENCLOSURE-617'L x 15.5'H= 9,563.5' SF CORE ENCLOSURE-947'L x 15.5'H= 14,678.5' SF GLASS RAILING- 820'L Value Engineering Example Reduce Glass Enclosure around Bus Deck Waiting Area

Transbay Transit Center

Key Plan Bus Deck Storefront

Elevation Detail: Typical Bus Deck Storefront

View of Typical Bus Deck Storefront

Value Engineering Example Substitute Floor Materials at Bus Deck Pedestrian Island

Transbay Transit Center

Original: two-colored wave pattern terrazzo

Value Engineering Example Substitute Polished Concrete for Wave Pattern Terrazzo at Floor

Transbay Transit Center

Current Design: Single Color Polished Concrete

Value Engineering Example Grand Hall Interior Skylight - Glass Floor in lieu of conical skylight and bench

Transbay Transit Center

Original Design

Current Base

Value Engineering Example

Transbay Transit Center

Value Engineering Example Remove LED Lighting Controls at Street Pass Through. Soffits (1st & Fremont Streets), Add Uplights

Transbay Transit Center

Original Design

Current Design - Remove LED lighting

33

Value Engineering Example Replace Glass Wall Panels (W-5) with Metal Panels

Transbay Transit Center

Original Design

Current Design

Value Engineering Example Substitute Standard Reinforced Storefront System (Kawneer) in Lieu of Top/Bottom Supported System (W-2) at Retail Locations, Ground, and Second

Ground Level Retail

Second Level Retail

Original Design (no vertical mullion)

Current Design (with standard vertical and horizontal mullion)

Levels

Value Engineering Example **Alternate Ceiling Designs**

Transbay Transit Center

Original Design: GFRC

Value Engineering Example Ceilings: Revised Profiles in Selected Area

Transbay Transit Center

Option A: Shallow GFRC Corrugation Alternate

Value Engineering Example **Ceilings: Alternate Included in Construction Documents**

Transbay Transit Center

Option B: Metal Alternate (Same Profile with Moldings)

Transhay Tra

Value Engineering Example Ceilings: Revised Profiles Selected in Areas

Transbay Transit Center

Option C: Aluminum Alternate

Value Engineering Example Detail of current Metal Ceiling

Value Engineering Example W-1 Metal Awning – Natoma Street View

Value Engineering Example W-1 Metal Awning – Pattern Scale Study at PCPA New Haven

Value Engineering Example W-1 Metal Awning – Full Size Panels in San Francisco

Transbay Transit Center

43

Value Engineering Example W-1 Metal Awning – Detailed View, Without LED Light

Value Engineering Example W-1 Metal Awning – Mission Square View

Value Engineering Example W-1 Metal Awning – First and Minna Street View – Relationship to Transbay Tower

- Concept Validation Phase Estimated savings in Phase 1 as a result of the elimination of the 180' deep drilled piers \$50M (2008 \$)
 Delete 180' deep piers (2014 \$) \$ 58,300,000
- Design Phase Estimated savings of accepted VEs from SD thru CD.

Enclosure/Glazing	\$ 50,503,000
Finishes – Ceiling	\$ 10,000,000
Finishes – Floor	\$ 2,220,000
Finishes - Misc.	\$ 2,335,000
MEP	\$ 8,567,000
Rail	\$ 2,700,000
Roof Park	\$ 15,234,000
Other	\$ 5,092,000
Subtotal	\$ 96,651,000
Indirect Costs (23.7%)	\$ 22,906,300
Total (2010 \$)	\$ 119,557,300
Total (2014 \$)	\$ 136,295,300

Bidding Phase Value Engineering Proposals Ongoing

- Specification Section 00 04 20 Value Engineering Proposals
- As a continued effort, Bidders are encouraged to submit Value Engineering (VE) proposals during the pre-bid period
- The intent is to have Bidders use their expertise to develop, prepare and submit proposals to optimize value during the performance of the work
- TJPA gets full value of the VE

Bidding Phase Value Engineering Proposals

- To date, \$954,000 worth of Bidder suggested VE proposals have been accepted.
- Examples include:
 - Revision of the Saddle Connection at the Bus Ramp
 - Alternate Fittings Premade in lieu of soldering in field for Plumbing
- 33 Trade Group Packages yet to bid

Construction Phase Value Engineering Proposals

- Specification Section 00 04 20 Value Engineering Proposals
- As a continued effort, Trade Subcontractors are encouraged to submit Value Engineering (VE) proposals during the post-bid period
- The intent is to have Trade Subcontractors use their expertise to develop, prepare and submit proposals to optimize value during the performance of the work
- TJPA gets 50% value of the VE

Construction Phase Value Engineering Proposals

- To date, \$2,401,459 worth of Subcontractor suggested VE proposals have been accepted
- Examples include:
 - Replacement of Orthotropic Steel Box Girders with Composite Griders
 - Rebar Revisions in Train Box Matt Slab
- 36 Subcontracts yet to award

- Value Engineering has been a continuous process throughout all phases
- From April 2009 to date, there have been 129 meetings discussing Value Engineering
- As of September 9th, 2014 Value Engineering has yielded an estimated \$198 Million in savings for Phase 1
- The program team continues to look for cost reduction strategies during the Bidding and Construction Phases